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Abstract: The problem of inferring interactions from observations of individual behavior in net-
worked dynamical systems is ubiquitous in science and engineering. From brain circuits to financial
networks, there is a dire need for robust methodologies that can unveil network structures from individ-
ual time series. Originally formulated to identify asymmetries in pairs of coupled dynamical systems,
transfer entropy has been proposed as a model-free, computationally-inexpensive framework for net-
work inference. While previous studies have cataloged a library of pathological instances in which
transfer entropy-based network reconstruction can fail, we presently lack analytical results that can
help quantify the accuracy of the identification and pinpoint scenarios where false inferences results
are more likely to be registered. Here, we present a detailed analytical study of a Boolean network
model of policy diffusion. Through perturbation theory, we establish a closed-form expression for the
transfer entropy between any pair of nodes in the network up to the third order in an expansion param-
eter that is associated with the spontaneous activity of the nodes. While for slowly-varying dynamics,
transfer entropy is successful in capturing the weight of any link, for faster dynamics, the error in the
inference is controlled by local topological features of the node pair. Specifically, the error in the infer-
ence of a weight between two nodes depends on the mismatch between their weighted in-degrees that
serves as a common uncertainty bath upon which we must tackle the inference problem. Interestingly,
an equivalent result is discovered when numerically studying a network of coupled chaotic tent maps,
suggesting that heterogeneity in the in-degree is a critical factor that can undermine the success of
transfer entropy-based network inference.
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1. Introduction

Networks arise in all areas of science and engineering whenever we study the interactions between
discrete actors [4]. To understand the functioning of the brain, it is critical to know which regions are
sending signals to which other regions [8]. In ecology, the goal may be to understand the structure
of the food web, that is to identify which organisms depend on which others for sustenance [10]. In
social science or epidemiology, the question may be to identify links between people along which
information or disease might spread [13]. Similarly, financial regulators often wish to understand the
interdependence of financial institutions that are enmeshed by a web of investments and loans, in order
to determine how a shock might ripple through the community [25].

The network topology is not known explicitly in most of these real-world examples, thereby calling
for data-driven computational methods to identify links from time-series collected at each node. In this
process of network inference, one seeks to determine which actors influence the dynamics of which
other actors, from the joint time evolution of their states. Despite considerable progress in network
inference, the precise quantification of the errors associated with the implementation of these methods
remain elusive. This is the motivating question for the present study.

In mathematical terms, a network is modeled by a graph Γ = (V,E), a collectionV of vertices (or
nodes), some subset of which are connected pairwise by a set E of edges (or links) [11]. In particular,
we consider weighted directed networks, in which each edge interpreted as beginning at a node j and
end ending at a node i, and to which there is associated a scalar weight Wi j. With respect to network
inference, given two nodes i and j, one seeks to infer if node j influences the behavior of node i and,
in addition, the strength Wi j of that influence. In particular, the interest is in direct influence, that is,
if node i depends on node j and node j on node k, then node k influences node i, but perhaps only
indirectly, and it is important to distinguish this from the direct influence of j on i.

In an authentic model-free vein, information theory provides a mathematical framework for drawing
such inferences based solely on time-series [5]. Information theory grew out of the effort to understand
the transmission of signals along noisy communication channels and has strong connections both with
statistical physics and with optimal strategies for gambling and investment [9]. The information in an
event is associated with the uncertainty in its outcome, with unlikely events possessing more informa-
tion. Information may flow among the units of a network, and can be used to reconstruct its topology.
For example, Squartini and colleagues [25] have recently reviewed information-theoretic results for
network inference, focusing on financial networks, and Wibral and colleagues [29] have presented an
overview of the state-of-the-art of information-theoretic methods in neuroscience.

Introduced almost twenty years ago by Schreiber [24] to quantify asymmetries in coupled dynam-
ical systems, transfer entropy is emerging as an approach of choice to guide the process of network
inference from time-series. A thorough survey of its mathematical properties and many applications is
provided in [6]. Given a pair of time-series, transfer entropy measures the reduction in uncertainty in
predicting the future state of one of the time-series from its present value, compared with predicting
its future state from its present value and that of the second series. In the context of network inference,
one predicts that a link is present from node j to node i given a value of transfer entropy from node j
to node i that is statistically different from zero.

While network inference based on transfer entropy is intuitive and computationally inexpensive, it
is not free of technical limitations that may beget false positive and negative results. Most of these lim-
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itations are rooted in the pairwise definition of transfer entropy that does not contemplate the existence
of indirect influence from any other node in the network. Extending the transfer entropy definition to
multivariate interactions could address some of these limitations, but it would require the estimation of
high dimensional probability mass functions that could be computationally unfeasible beyond simple
motifs [6]. While Runge [23] an Sun and colleagues [27] pinpoint several pathological instances in
which transfer entropy-based network reconstruction can fail, we currently lack analytical results that
can help assess the accuracy of the inference and determine scenarios where false results should be
expected. Filling this gap in knowledge is the chief aim of this study.

Specifically, we continue the mathematically-principled treatment of a random Boolean network
(RBN) model proposed in [19] as a minimalistic representation of policy diffusion. The model is a
simplification of the more general setup presented in [2, 12] to describe enactment and changes to
alcohol-related policies in the 50 state of the United States of America from 1080. In the RBN, each
node is assigned a Boolean variable, whose probability of activation at a given time-step depends on
both the state of its neighboring nodes and on its own internal dynamics, each of which is specified by
weighting parameters. The model possesses a small parameter that allows for the use of perturbation
methods to compute closed-form equations approximating the relations between system parameters
and the transfer entropy, allowing the reconstruction of the former from the latter. In [18], the analysis
was completed and extended to the case in which the parameters vary with a prescribed temporal period
τ, while here we assume, for simplicity, that it is time-independent.

The model provides an interesting test case for a number of reasons. Foremost is that its explicit
and linear mathematical formulation allows for closed-form analysis that is not possible for real-world
datasets, nor for most nonlinear mathematical models. Second is that because it is defined in terms
predetermined parameters, the ground truth is known and deviations from that ground truth can be
exactly measured. It is exceptionally simple and fast to evaluate, allowing us to compute long time-
series that would be unavailable in most experimental settings. Finally, because the state space of the
model is binary, computation of the transfer entropy is especially fast and inexpensive.

The RBN model consists of N nodes with state Xi, i = 1 . . .N, each of which can take the two states
zero or one. The system’s state at a given time depends on its previous state according to the linear
transition law

Pr
[
Xi(t + 1) = 1|X1(t) = x1, . . . , XN(t) = xN

]
= Θ

1 +

N∑
j=1

Wi jx j

 . (1.1)

The coefficient Θ represents the probability of spontaneous activation of each node, while the term Wi j

represents the nonnegative weighted influence on node i from its neighbor j. We assume for simplicity
that the network contains no self-connected edges, that is,

Wii ≡ 0. (1.2)

In the context of policy diffusion, Θ measures the tendency of a legal unit to spontaneously enact
or change a policy in the absence of any interaction with other legal units. With reference to real
policy-making in the United States of America, adopting a time-step of a month would yield small
values of Θ for policies that have a high start-up cost and unknown, long-term, benefits as well as for
policies that attend rare, specific problems that could have significant opposition [2, 12]. The RBN
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shares similarities with synapsis models in theoretical neuroscience, where influence between neurons
is represented through excitatory networks [22]. This is the case of slowly-varying dynamics on which
we focus, thereby enabling a perturbation argument that treats Θ as a small parameter.

The primary analytical result of [18] is a closed-form expression relating the transfer entropy from
j to i with the weight Wi j, namely,

TE j→i = Θ2G(2)(Wi j) + O
(
Θ3

)
. (1.3)

where G(2) is the one-to-one map

G(2)(x) = −x + (1 + x) log (1 + x). (1.4)

This expression was derived earlier in [19] where Wi j was assumed to take only the binary values zero
or one. In [18], it is proposed that truncating this expression and solving for Wi j should be an effective
way to estimate the network weights. This is shown via a handful of examples to largely reproduce
the network structure of several small time-dependent networks and one larger random network. These
examples include networks with as few as two and as many as 100 nodes.

In the present work, we compute the next-order, O
(
Θ3

)
, term in this approximation, providing an

estimate of the error associated with indirect influence from other nodes in the network. Approxima-
tion (1.3) is local in the sense that the weight corresponding to a link (i, j) is determined entirely by the
transfer entropy from j to i. The correction, by contrast, depends on the difference between the total
weighted inputs incident on each of the nodes i and j, revealing the effect of the more global network
structure on the transfer entropy.

This paper is organized as follows. In Sec. 2 we introduce our motivating example, whose surprising
behavior we wish to explain. In Sec. 3, we summarize additional mathematical background to this
problem. In Sec. 4, we calculate the next order term in the expansion (1.3) to understand the errors
made in the example calculation. Then in Sec. 5 we return to this example, which is illuminated by
our calculation. To offer evidence in favor of the generality of the analysis, we numerically study a
network of coupled chaotic maps in Sec. 6. Finally, we present our main conclusions in Sec. 7.

2. A surprising example

We begin by describing the network at the center of the example. The Barabási-Albert (BA) network
was introduced in 1999 to model the network structure of the internet, although related models date
back at least to Yule [1, 30]. Such a network is constructed by an algorithm exhibiting preferential
attachment that proceeds as follows. Begin with a small ‘seed’ graph, which we take to be the complete
network with m0 nodes. Then at step k+1 = m0+1, . . .N, choose m existing nodes at random according
to the weights

p j =
d j∑k
i=1 di

,

where di is the in-degree of node i (the number of links pointing toward i), and create links between
node k+1 and the m chosen nodes. By construction, the network have no self-directed edges connecting
a node to itself (assuming that the seed network satisfies this property.)

The standard BA network is undirected; Prettejohn et al. describe a directed network variation [20].
In this model, the links added at each step are directed edges from node k + 1 to node j. If that were
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the entire model all links would point toward the seed graph, and none would point away from it. In

the modified version, once such a directed edge is chosen, then with the same probability pj another

directed edge is created in the opposite direction.

After constructing such a network Γ we introduce a random weight Wi j, chosen from the uniform

distribution on [0, 1], to each link from a node j to a node i. The elements of the weight matrix W
in (1.1) represent the influence of j on i. It is visualized in Fig. 1. The out-degree of each node, that is,

the number of nonzero entries in each row is fairly homogeneous: 40 of the 50 nodes have out-degree

equal to five, while the in-degree (number of nonzero entries per column) is much more heterogeneous,

with 15 different values ranging from 0 to 20.

Figure 1. (a) Visualization of the matrix W with larger entries shaded darker. (b) Histograms

of the in- and out-degree of Γ, measuring the distribution of the weighted in- and out-degrees

in the network. The weighted in-degree of a node is defined as the corresponding row-sum

of W, and, similarly, the out-degree is the column-sum. This histogram is normalized to have

unit area, as are all others in the paper. The weighted in-degree and out-degree both have

mean 2.7. The in-degree has variance 6.7, while the out-degree has variance 0.58.

In the computational example we apply the result of [18] to reconstruct two distinct but related

networks. The first is described above and the second is its transpose ΓT, obtained by reversing the

orientation of each directed link. The weight matrix for ΓT is simply the transposed weight matrix WT.

The in-degree of a node i of ΓT is equal to the out-degree of the same node in Γ, and vice-versa.

To analyze the model, we run 100 time-series each of 105 steps. For each of the 2,450 pairs (i, j)
(excluding the terms with i = j since there are no self-loops by construction), we compute the transfer

entropy TE j→i via a simple plug-in estimation [16] where we count the occurrences of the possible

states that define the interaction between the node pair. Then, using the leading-order term in (1.3),

an approximate value of the corresponding weight. We utilize Θ = 0.05 so that the probability on

the right-hand side of (1.1) is less than one for all i. We average the computed value of the transfer

entropy over the 100 realizations. If the O
(
Θ3

)
error term in (1.3) is negligible, then the inference of

the influence of j on i in Γ should be identical to the influence of i on j in ΓT.

In Fig. 2, we plot the inferred weights as a function of their exact values for both these matrices,
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here showing only the 262 nonzero entries. When the weight is small, the computation significantly

overestimates it in both cases. For larger weights, there is an increased amount of variation in the

predicted values, but it is distributed in markedly different ways for the two matrices. For the network

Γ, the variation appears to be distributed evenly above and below the exact value. For the network

ΓT, the error in the inference is nearly always positive, and appears to be significantly smaller. This is

confirmed in the right panel of the figure, which shows histograms of the errors, normalized to have

unit area. The histogram for the network Γ has mean close to zero and is considerably broader than the

histogram for ΓT, which has a positive mean value.

Since most of the entries of the weight matrix W are zero, a critical measure of success in the net-

work reconstruction is minimizing false positives, that is, links that are inferred between disconnected

nodes. The overestimation of weights lower than 0.1 evident in Fig. 2 suggests that some false positives

are unavoidable. Of the 262 largest inferred weights for both Γ and ΓT, 11 entries for W and 13 for WT

would be classified as false positives. Note that this computation was performed on the computation

based on the transfer entropy averaged over 100 realizations. Significantly more false positives were

found if the calculation was performed using a single realization.

Clearly, the calculated errors in the weights in the calculation for Γ are larger than for the similar

calculation using ΓT, despite the fact that equation (1.3) predicts the same leading-order accuracy. The

analysis of this paper aims to determine what topological features of the two networks conspire to

create this difference and to correct it.

Figure 2. (a) Computed values of the nonzero matrix entries vs. the exact values for both Γ

and ΓT. (b) Histogram of the error in the computed approximations for the nonzero entries

of the two matrices. For Γ the inference error has mean −7.8 × 10−4 and variance 1.8 × 10−3.

For ΓT the inference error has mean 2.3 × 10−2 and variance 4.8 × 10−4.
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3. Mathematical background

3.1. Markov chains

We assume familiarity with the basics of Markov chains and use this section mainly to set nota-
tion [7]. We consider a discrete-time finite-state Markov chain Z(t), t ∈ N evolving in a sample space
Z whose generic element is denoted as zi, i = 1 . . . |Z| where |Z| is the cardinality of the set. Lower
case letters will be used to denote realizations of random variables. The transition matrix is a matrix
P ∈ R|Z|×|Z|+ , whose columns each sum to one. The entry Pi j represents the probability that the the
Markov chain will transition from state zi to state z j at any given step,

Pi j = Pr[Z(t + 1) = z j|Z(t) = zi].

Considered as a row vector, the distribution ν(t) evolves according to the following recursion,

ν(t + 1) = ν(t)P, (3.1)

for t ∈ N and initial distribution ν(0) = ν0.
The solution to this recursion is a probability distribution for all times t, such that its entries are

non-negative and sum to one. Given mild assumptions on the transition matrix [7] P the recursion
converges exponentially to a unique limiting distribution denoted π as t → ∞, called the stationary
distribution. This is given by the left eigenvector with unit eigenvalue,

π = πP,
N∑

i=1

πi = 1. (3.2)

3.2. Elements of information theory

Our goal is to reconstruct the network Γ from a time-series of finite duration generated by the
dynamics of (1.3). Since this time series is finite, it is impossible to determine with certainty the
matrix used to create it. The object, then, is to find the network that is consistent with the data while
requiring the fewest unsupported assumptions. Loosely speaking, we can say that it should not be too
surprising [9]. The idea of surprise is that unlikely events convey more information, so a “surprise
function” should assign a large value to unlikely events and a small value to expected events.

The information associated with the event that a random variable X drawn from a sample space X
takes the value x is

I(x) = − log Pr (X = x).

Here, we make use of natural logarithms, so that information is measured in nats. The (Shannon)
entropy of the random variable X is then the expectation of the information

H(X) = E[I(X)] = −
∑
x∈X

Pr(X = x) log Pr(X = x), (3.3)

which quantifies the amount of uncertainty in X, where E denotes expectation. The entropy is the
unique functional over probability distributions that satisfies the Shannon-Khinchin axioms [14], mak-
ing it the best choice for measuring the uncertainty of a distribution. Since the entropy is the expectation
of I(X), it is generically non-negative.
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Given another random variable Y , the notions of joint and conditional entropies are similarly defined
by

H(X,Y) = −
∑

x∈X,y∈Y

Pr(X = x,Y = y) log Pr(X = x,Y = y), (3.4a)

H(X|Y) = −
∑

x∈X,y∈Y

Pr(X = x,Y = y) log Pr(X = x|Y = y), (3.4b)

where Y is the sample space of Y .
These notions can be readily extended to stochastic processes, such that given two stationary pro-

cesses X and Y , transfer entropy from Y to X is defined as [24]

TEY→X = H(X(t + 1)|X(t)) − H(X(t + 1)|X(t),Y(t))

=
∑
x+∈X
x∈X
y∈Y

{
Pr

[
X(t + 1) = x+, X(t) = x,Y(t) = y

]
× log

Pr
[
X(t + 1) = x+|X(t) = x,Y(t) = y

]
Pr [X(t + 1) = x+|X(t) = x]

}
.

(3.5)

Transfer entropy measures the reduction in the uncertainty of predicting X(t + 1) from both X(t) and
Y(t) relative to predicting it from X(t) alone. As a simple consequence of its definition, transfer entropy
is non-negative.

We acknowledge that building on this definition, a variety of amelioration could be undertaken.
For example, one may consider delayed interactions between the two processes, such that Y(t) in (3.5)
should be replaced with Y(t − δ) with δ being a suitable time-delay [28]. Also, one may attempt at a
symbolic treatment of the time-series [26], or pursue an analysis in terms of recurrence plots [21]. In
this work, we focus on the classical definition in (3.5) toward gathering analytical insight into the role
of the topology on the accuracy of transfer entropy-based network inference.

4. Analysis

We briefly present the computation of the next-order correction in the transfer entropy formula (1.3).
This necessarily builds on the calculation in [18], the details of which are summarized below. As
in most perturbative calculations [15], the number and complexity of terms greatly increases as the
order of the calculation increases. The details of this calculation were assisted and verified using
Mathematica.

4.1. The stationary distribution

System (1.1) can be reformulated as a Markov chain, withZ = 2N states z = [X1, . . . , XN] ∈ {0, 1}N ,
such that each state is a binary vector whose entries take the value one or zero depending on whether
that node is active. Letting Z(t) = [X1(t), . . . , XN(t)], then the transition probability in (1.1) can be
written as

Pr
[
Xi(t + 1) = 1|Z(t) = z

]
= Θ

[
1 + eT

i Wz
]
, (4.1)

where the unit vector ei is column i of the identity matrix. For both the possible realizations of Xi(t+1),
this can be written as

Pr
[
Xi(t + 1) = xi

+|Z(t) = z] =
(
1 − xi

+

)
+ Θ

(
2xi

+ − 1
) [

1 + eT
i Wz

]
. (4.2)
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Taking a product of such terms yields the transition matrix of this Markov chain

Pi j(t) = Pr
[
Z(t + 1) = z j|Z(t) = zi

]
=

N∏
k=1

{(
1 − eT

k z j

)
+ Θ

(
2eT

k z j − 1
) [

1 + eT
k Wzi

]}
(4.3)

The transition matrix P can be expanded in powers of Θ as follows:

P = P(0) + ΘP(1) + Θ2P(2) + Θ3P(3) + O
(
Θ4

)
.

The first three terms are given in [18]. Specifically, the zeroth order term is

P(0)
i j =

N∏
k=1

[(
1 − eT

k z j

)]
=

1
∥∥∥z j

∥∥∥ = 0,
0

∥∥∥z j

∥∥∥ > 0.
(4.4a)

Here, the norm of a binary vector is taken to be the number of nonzero entries, namely,

‖z‖ =

N∑
i=1

Xi.

The first order term is

P(1)
i j =

N∑
r=1


(
2eT

r z j − 1
) [

1 + eT
r Wzi

] N∏
k=1
k 6=r

(
1 − eT

k z j

) =


−

[
N + 1T

NWzi

] ∥∥∥z j

∥∥∥ = 0,[
1 + zT

j Wzi

] ∥∥∥z j

∥∥∥ = 1,

0
∥∥∥z j

∥∥∥ > 1,

(4.4b)

where 1N denotes a column vector of N ones. Finally, the second order term is

P(2)
i j =

N∑
r,s=1
r>s


(
2eT

r z j − 1
) [

1 + eT
r Wzi

] (
2eT

s z j − 1
) [

1 + eT
s Wzi

] N∏
k=1

k 6=r,s

(
1 − eT

k z j

)

=



∑N
r,s=1
r>s

{[
1 + eT

r Wzi

] [
1 + eT

s Wzi

]} ∥∥∥z j

∥∥∥ = 0,

−
[
1 + zT

j Wzi

] [
N − 1 +

(
1T

N − zT
j

)
Wzi

] ∥∥∥z j

∥∥∥ = 1,{
1 + zT

j Wzi +
[
eT
I1(z)Wzi

] [
eT
I2(z j)Wzi

]} ∥∥∥z j

∥∥∥ = 2.

0
∥∥∥z j

∥∥∥ > 2,

(4.4c)

where I1(z j) and I2(z j) are used to identify the two entries of z j that are different from zero for the
case

∥∥∥z j

∥∥∥ = 2.
In a similar manner, we compute P(3). The calculation below will only need the values of P(3) for

which ‖zi‖ = 0. Accordingly, that is all we report here

P(3)
i j

∣∣∣∣
zi=0

=



−
(

N
3

)
,

∥∥∥z j

∥∥∥ = 0(
N−1

2

)
,

∥∥∥z j

∥∥∥ = 1

−(N − 2),
∥∥∥z j

∥∥∥ = 2
1,

∥∥∥z j

∥∥∥ = 3
0,

∥∥∥z j

∥∥∥ > 3.

(4.5)
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We remark that P(n)
i j 6= 0 only in the case that both ‖zi‖ ≤ n and

∥∥∥z j

∥∥∥ ≤ n. There are of course
(

N
n

)
vectors z with ‖z‖ = n, so that if n � N then the approximate matrix, computed for all transitions with
‖z‖ ≤ n, is low rank. Given a time- series of system (1.1), this provides a way to check whether Θ has
been chosen small enough that the proposed approximation is valid.

Next, we expand the stationary distribution to the third order, similar to the transition matrix,

π =

3∑
j=0

Θ jπ( j) + O
(
Θ4

)
, (4.6)

By replacing (4.6) into (3.2) and grouping terms of the same power in Θ, we determine the following
chain of relationships:

π(0)
(
I − P(0)

)
= 0,

N∑
j=1

π(0)
j = 1, (4.7a)

π(1)
(
I − P(0)

)
= π(0)P(1),

N∑
j=1

π(1)
j = 0, (4.7b)

π(2)
(
I − P(0)

)
= π(0)P(2) + π(1)P(1),

N∑
j=1

π(2)
j = 0, (4.7c)

π(3)
(
I − P(0)

)
= π(0)P(3) + π(1)P(2) + π(2)P(1),

N∑
j=1

π(3)
j = 0. (4.7d)

The left column of equations contains the expansion of the stationary equation, while the right column
enforces the condition that π is a probability distribution. The matrix

(
I − P(0)

)
in each equation is

singular, with a one-dimensional null space. The first equation (4.7a) is solved by its null vector. The
other equations are all solvable, as long as the vectors on their right-hand sides sum to zero, and they
all do.

The first three equations in (4.7) for the zeroth, first, and second order terms in the expansion are
solved in [18] and are given by

π(0)
i =

1 ‖zi‖ = 0,
0 ‖zi‖ > 0,

(4.8a)

π(1)
i =


−N ‖zi‖ = 0,
1 ‖zi‖ = 1,
0 ‖zi‖ > 1,

(4.8b)

and

π(2)
i =



(
N
2

)
− 1T

NW1N ‖zi‖ = 0,

−(N − 1) + zT
i W1N ‖zi‖ = 1,

1 ‖zi‖ = 2,
0 ‖zi‖ > 2,

(4.8c)
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To extend the computation to the next order, we replace (4.4) and (4.8) into (4.7d). By solving the
equation and imposing the constraint that the perturbation is zero-sum, we determine

π(3) =



−
(

N
3

)
+ (N − 1)1T

NW1N + 1
21T

N

(
WWT −W ◦W

)
1N − 1T

NW21N

∥∥∥z j

∥∥∥ = 0,( N−1
2

)
−(N − 2)zT

i W1N − 1T
NW1N

+

N∑
k=1

((
zT

i Wek

)2
+ (zT

i Wek)
(
eT

k W1N − 1T
NWek

)) ‖zi‖ = 1,

−(N − 2) + zT
i W1N +

∑N
k=1

(
eI1(zi)Wek

) (
eI2(zi)Wek

)
‖zi‖ = 2,

1 ‖zi‖ = 3,
0 ‖zi‖ > 3,

(4.9)

where the Hadamard product [3], or element-wise product, (A ◦ B)i j = Ai jBi j, is in the
∥∥∥z j

∥∥∥ = 0 term.
Marginalizing (4.6) via (4.8) and (4.9), we compute the stationary periodic distribution of each node

Pr(Xi(t) = xi) = (1 − xi) + (2xi − 1)

Θ + Θ2eT
i W1N + Θ3

N∑
k=1

(eT
k W1N)(eT

i Wek)

 + O
(
Θ4

)
. (4.10)

This distribution describes the probability that a node is active or non-active at a given time. Should
the expansion be truncated at the second order in Θ, only the row sum of W at node i (quantifying the
weighted in-degree of node i) will enter the probability distribution in (4.10). These nodes are those
that influence node i with respect to system (1.1). Extending the analysis to the third power in Θ brings
forward a more complex dependence of node i on the other nodes in the network, in the form of a
weighted sum of all the elements of the matrix W (including those that are influenced by node i).

Similarly, marginalizing (4.6) with respect to any nodes but node pair i j, we determine the following
joint distribution for i j:

Pr
(
Xi(t) = xi, X j(t) = x j

)
= Pr

(
Xi(t) = xi

)
Pr

(
X j(t) = x j

)
+ (2xi − 1)(2x j − 1)eT

i WWTe jΘ
3 + O

(
Θ4

)
. (4.11)

While a second order expansion in Θ would yield that node i and j are independent, retaining the third
order power yields a different claim. Specifically, (4.11) cannot be obtained from (4.10) if we are
interested in the quantification of the third order term in Θ.

4.2. Transfer entropy

We now develop the two leading-order terms in the expansion of the transfer entropy, using the
definition (3.5) and the expansion (4.6) developed in the last section. Without loss of generality we
consider the transfer entropy from node 2 to node 1

TE2→1 =
∑

x1
+,x1,x2

Pr
[
X1(t + 1) = x1

+, X
1(t) = x1, X2(t) = x2

]
log

Pr
[
X1(t + 1) = x1

+|X
1(t) = x1, X2(t) = x2

]
Pr

[
X1(t + 1) = x1

+|X1(t) = x1
] ,

(4.12)
where the probabilities are evaluated using the stationary distributions derived in the previous section.
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We can compute the conditional probability in the denominator of the logarithm term using the
transition probability (4.2) and properly marginalizing the stationary distribution (4.6), as follows:

Pr
[
X1(t + 1) = x1

+|X
1(t) = x1

]
=

(
1 − x1

+

)
+(

2x1
+ − 1

) (
Θ + Θ2d1 + Θ3

(
eT

1 W21N + x1eT
1 W2WTe1

))
+ O

(
Θ4

)
(4.13)

where

d j =

N∑
k=1

W jk. (4.14)

is the weighted in-degree of node j. In agreement with one’s expectation, for small values of Θ, such
that an affine expansion would hold, the probability of a transition does not depend on the network
topology. Retaining the second order power in Θ, introduces a dependence on all the nodes that influ-
ence node 1, through d1. Increasing further the order of the expansion, we observe a richer influence
from the entire network, expressed through quadratic and cubic terms in the elements of W.

A similar calculation yields the term in the numerator of (4.12). By using (4.11) and (4.6), we
establish

Pr
[
X1(t + 1) = x1

+|X
1(t) = x1, X2(t) = x2

]
=

(
1 − x1

+

)
+

(
2x1

+ − 1
) [

Θ
[
1 + W12x2

]
+ Θ2(d1 −W12)

+ Θ3

w̃1
2W1N + w̃1

2WWT
(
x1e1 + x2e2

)
+ x1x2

N∑
k=3

W1k

N∑
j=1

W1 jW2 jWk j


 ] + O

(
Θ4

)
(4.15)

where w̃1
2 = (eT

1 W − W12eT
2 ) identifies the first row of W with its second element set to zero. Similar

to (4.13), for small values of Θ, the probability of node 1 to transition to a give state conditional to its
present state and the present styate of node 2 depends only on W12. Reaching to the second power in Θ

brings about the effect of all the other nodes that influence node 1 (excluding node 2). The third power
in Θ depicts a further degree of interaction, wherein the entire network contributes to the probability
of transition (4.15), involving both cubic and quartic terms in terms of the elements of W.

The joint probability Pr
[
X1(t + 1) = x1

+, X
1(t) = x1, X2(t) = x2

]
in (4.12) is calculated as the product

of (4.11) and (4.15). From this joint probability and the conditional probabilities in (4.13) and (4.15),
we can calculate an expansion for transfer entropy. Switching from labeling the indices from (1, 2) to
(i, j) with i 6= j, we establish

TE j→i = Θ2G(2)(Wi j) + Θ3G(3)
i j (W) + O

(
Θ4

)
(4.16)

where the scalar function G(2) is defined in (1.4) and the matrix function G(3) is defined entry-wise as

G(3)
i j (W) = Wi j

(
Wi j − di − d j

)
+ log (1 + Wi j)

(
di −Wi j + (1 + Wi j)d j

)
. (4.17)

In agreement with the discussion on the effect of the network network topology on local joint and
transition probabilities in (4.13) and (4.15), the asymptotic expansion for transfer entropy in (4.16)
suggests that increasing the order of the expansion in TE j→i hampers the possibility of mapping trans-
fer entropy one-to-one with the corresponding weights. Surprisingly, the term in Θ3 depends on the
influence of j on i along with the in-degree of both i and j, which encapsulate the overall influence of
any other network node on the pair.
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4.3. Solving for the weights

In the process of network inference, we should compute all the entries of W from transfer en-
tropy values estimated from time-series. To accomplish this goal, we must solve the system of equa-
tions (4.16) with i, j = 1, . . . ,N, i 6= j, for W. For convenience, we scale transfer entropy by Θ2,
yielding the following matrix-valued equation for W

Ti j = G(2)(Wi j) + ΘG(3)
i j (W) + O

(
Θ2

)
, i, j = 1, . . . ,N, i 6= j (4.18)

where Ti j = Θ−2TE j→1.
Formally, we can solve (4.18) for W as a series in Θ, as follows:

W = W (0) + ΘW (1) + O
(
Θ2

)
and find the two equations

O (1) : Ti j=G(2)
(
W (0)

i j

)
,

O (Θ) : 0 =
[
G(2)

]′ (
W (0)

i j

)
W (1)

i j + G(3)
i j

(
W (0)

)
.

These have formal solutions

W (0)
i j =

[
G(2)

]−1
(Ti j) (4.19a)

W (1)
i j = −

G(3)
i j

(
W (0)

)
[
G(2)]′ (W (0)

i j

) (4.19b)

Ultimately, we compute any element of W by following these steps. (i) For every pair i 6= j, we
solve (4.19a) to compute value W (0)

i j and we assemble the matrix W (0) (with zeros on the diagonal). (ii)
For every pair i 6= j, we compute the correction W (1)

i j by using the entire matrix W (0).
To shed light on the topological underpinnings of the correction W (1) that relates TE j→i to weights

beyond that between i and j, we can perform a further perturbation analysis. Specifically, we can
estimate the correction term in (4.19b) in the case that the entries in W are small using Taylor series.

As shown in [18], G(2)(Wi j) ∼
W2

i j

2 . Similarly, expanding (4.17) under the assumption that Wi j � 1 but
the other entries are O (1), we find

G(3)
i j (W) ∼

W2
i j

2

(
d j − di + Wi j

)
+ O

(
||W ||3

)
. (4.20)

Therefore the correction (4.19b) approximately satisfies

W (1)
i j ∼

W (0)
i j

2

(
d(0)

j − d(0)
i + W (0)

i j

)
+ O

(∥∥∥W (0)
∥∥∥2

)
, (4.21)

where d(0)
i is the in-degree of node i with respect to matrix W (0), which, based on (4.19a) encapsulates

the overall information transfer to node i from its neighbors. The same expansion holds, with a different
remainder, if Wi j � 1 but the other weights in (4.17) are O (1).
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 j  i

Wij

TE
j→i

Figure 3. Schematic of a graph, showing a link from node i to node j with weight Wi j, as
well as the additional links pointing to these nodes from other parts of the graph. Node j
has in-degree 3 and out-degree 1. Node i has in-degree 4 and out-degree 0. Whereas only
the edge labeled Wi j contributes TE j→i at leading order. The correction depends on all the
pictured edges.

Overall, (4.21) indicates that W (1)
i j depends on all the transfer entropy values associated with in-

coming information to nodes i and j. Note that d(0)
i and d(0)

j have opposite signs in the term (4.21).
Specifically, the correction in the inference of the weight between nodes i and j can be split into two
terms W link

i j = 1
2

(
W (0)

i j

)2
and W topology

i j = 1
2W (0)

i j (d(0)
j −d(0)

i ). The first of these, W link
i j , represents a correction

that depends only on the computed transfer entropy for the pair i j. The second, by contrast, depends
on the mismatch between their weighted in-degrees from W (0) that serves as a common uncertainty
bath upon which we must tackle the inference problem. The computation of W (0)

i j treats the pair i j in
isolation, while the correction term W topology

i j accounts for the information which both nodes i and j
receive from the rest of the network; see Fig. 3. We attribute the different behaviors of the simulations
reported in Sec. 2 to this observation, as we relate in the next Section.

We further comment that to this order in the expansion, equation (4.17) yields that if Wi j = 0 then
Ti j = 0. Since transfer entropy TE j→i computed by time series is never exactly zero, this suggests
that the third order approximation will do no better than the second-order approximation at discrimi-
nating between Wi j = 0 and Wi j positive but small. However, it can contribute to the accuracy of the
identification of nonzero weights, in terms of both the mean and variance of the prediction.

5. Continued numerical example

If transfer entropy TE j→i were a function solely of the weight Wi j and not on further topologi-
cal properties of the graph, then the inferred weights for a network Γ and its transpose, computed to
leading order, should be identical. That they were not found to be identical in Sec. 2 motivated the
computation, via perturbation expansion, of the next order correction terms, detailed in Sec. 4. Equa-
tion (4.21) provides an intuitive explanation for the differing behaviors. The correction term W topology

i j
is proportional to the mismatch between the weighted in-degrees of nodes i and j, with an additional
factor of Wi j. Fig. 1(b) shows that the weighted in-degrees for Γ vary more widely than the weighted
in-degrees of ΓT (which equal the weighted out-degrees of Γ). Therefore the range in their mismatch
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is larger, giving rise to the wider variation in the inferred weights for Γ than for ΓT.
We now apply the correction (4.19b) to the numerical simulations described in Sec. 2. In Fig. 4 we

compare the second and third order approximations for the computation with the networks Γ and ΓT.
Subfigures (a) and (b) show the second and third order approximations to the weights for the network
Γ. With respect to Γ, the variance of the error is reduced in the improved approximation, while the
mean error, which was already close to zero, stays about the same. For the network ΓT, as shown in
Subfigures (c) and (d), the mean error is reduced while the error variance is improved only slightly.
After the correction is applied, the inferred weights for both the networks Γ and ΓT are computed to
about the same accuracy.

Clearly, the correction term accounts for the marked difference between the inferred weights seen
in the initial numerical experiment. When the correction term is included in the computation, then
transfer entropy, already demonstrated to be a useful tool for network reconstruction, only improves.
Past studies have noted that TE j→i is in itself insufficient for reconstructing Wi j since it fails to condition
on the dynamics of the remaining nodes in the network [27]. The procedure outlined in Sec. 4.3
provides a method to nonlinearly combine the transfer entropies of all node-pairs in order to effectively
approximate such a conditioning.

6. Additional numerical example

The analysis performed in this paper applies only to the RBN model (1.1). It is tempting, however,
to draw from it a more general conclusion about transfer entropy. Namely, consider models in which
the coupling between the nodes of the network is weak. To leading-order, transfer entropy between
two nodes should depend only on the strength of the coupling between them, but this is subject to a
correction like that given in (4.20), dependent on the difference in total weighted in-degree of the two
nodes forming the pair.

In this section, we explore this hypothesis with a numerical example. We consider a coupled system
of chaotic tent maps subject to additive noise. The evolution of the ith state is given by the following:

xi(t + 1) = F
(
xi(t)

)
+ Θ

N∑
j=1

Wi j

(
F

(
x j(t)

)
− F

(
xi(t)

))
+ σni(t). (6.1)

Here, ni(t) is additive noise drawn from a normal distribution, with small multiplier σ and the nonlinear
function F, known as the tent map, is

F(x) =


2x 0 ≤ x < 1

2 ,

2 − 2x 1
2 ≤ x ≤ 1,

0 x < 0 or x > 1.

(6.2)

In the absence of noise—i.e., when σ = 0—solutions to (6.2) may synchronize. A condition for
the existence of stable synchronous solutions for this system is given by [?] based on the earlier work
of [17]. The condition is derived as follows. Define an N × N matrix L by

Li j =

Wi j, i 6= j,

−
∑

k 6=i Wik, i = j.
(6.3)
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Figure 4. (a) Computed values of the nonzero matrix entries vs. the exact values W using

second and third order approximations. (b) Histogram of the error in the two computed

approximations for the weight matrix W. Blue points and histogram repeated from Fig. 2.

(c) and (d). As in (a) and (b) but for the matrix WT with red points and histogram repeated

from Fig. 2. For Γ the inference error, including the correction has mean 2.9 × 10−4 and

variance 4.8× 10−4. For WT the inference error has mean 3.1× 10−4 and variance 3.5× 10−4.

These compare favorably with the values reported in the caption for Fig. 2.
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Figure 5. The pairwise transfer entropy computed as a function of the nonzero weights
for (a) the network Γ and (b) the network ΓT, together with best-fit linear functions. The
root-mean-square deviation from the best-fit line is .0096 for Γ, and .033 for ΓT.

Then stable solutions exist if, for all nonzero eigenvalues λ of W,

|1 + Θλ| <
1
2
. (6.4)

We were unable to find any examples of networks of the type used in Section 2 for which synchro-
nization was possible for both the weighted network Γ and its transpose ΓT. Instead we construct the
following simple family of weighted networks that may lead to synchronization. Let Γ be a directed
Erdős-Rényi network. Todo: cite? In this type of network the nodes are connected randomly such that
a directed link exists from j to i 6= j, with a fixed probability p < 1. Then for each node i, choose the
weights Wi j such that di =

∑
j Wi j = 1.

Thus the term W topology
i j is identically zero for Γ but nonzero for the network ΓT. We expect

from (4.21) that the computed transfer entropy for (6.2) using ΓT will be have larger variance than
the computed transfer entropy for Γ. Fig. 5 shows the results of this computation. In this computation
N = 30 and p = 1

2 .
Therefore, we conclude that the wider variation in in-degree for Γ than for ΓT is responsible for the

difference in the behaviors. This supports the claims analytically derived for the RBN apply to a wider
class of coupled dynamical systems. The main message of this work is that the success of pairwise
inference through transfer entropy depends on the topological features of the network to be discovered.
Networks with homogeneous in-degree can be more accurately inferred than those with heterogeneous
in-degree. The out-degree plays a surprisingly marginal role on the quality of the inference.

7. Conclusion

Transfer entropy is emerging as a promising approach to carry out network reconstruction from the
time-series of the network nodes. In this vein, one utilizes the value of transfer entropy between a
pair of network nodes to decide whether a link exists between them and, potentially, predict its weight.
This process is based on the premise that transfer entropy maps one-to-one with the weight of the link
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between two nodes, which is in general difficult to guarantee. In fact, the definition of transfer entropy
between two nodes deliberately excludes the effect of any other node in the network, thereby neglecting
indirect influence between the two nodes that could be supported by the entire network.

In this work, we seek to offer a precise quantification of the topological features that challenge
transfer-entropy network reconstruction in the context of a simple Boolean network model, inspired by
policy diffusion. Through perturbation analysis of the high-dimensional Markov chain associated with
the model evolution on the entire network, we establish a closed-form expression for the stationary
distribution. This is, in turn, utilized to derive our main result, consisting of a third-order accurate form
of transfer entropy between any two nodes in the network.

Our closed-form result indicates that for sufficiently slow dynamics, transfer entropy between two
nodes maps one-to-one the corresponding weight of the link between them. As the perturbation param-
eter increases to encompass dynamics that could evolve at a faster scale, the one-to-one map breaks
down, in favor of a more complex relationship between topology and transfer entropy. Specifically,
we discover that inferring the weight between two nodes calls for examining transfer entropy from any
other node in the network to the node pair under scrutiny. The higher the mismatch between the two
nodes in terms of their total incoming transfer entropy, the less accurate is the one-to-one mapping
between transfer entropy and influence.

This finding is particularly important when studying heterogeneous networks, such as scale-free
models where wide variations in the incoming information flow should be expected as we seek to
discover links around potential hubs. To detail this aspect, we have examined two instances of a
weighted, directed scale-free network: one in which heterogeneity manifests in terms of out-degree
and, the other, constructed through simple matrix transposition that displays heterogeneity in terms
of the in-degree distribution. In the former case, transfer entropy between each pair of nodes offers
an unbiased measure of the mutual influence between the nodes, such that one might estimate the
corresponding weight from transfer entropy reading with an uncertainty of zero mean. In the latter
case, we observe a systematic bias of transfer entropy-based inference, such that the uncertainty in
the estimation has a non-zero mean, although it is characterized by a narrower variance. Accounting
for the high-order correction derived in this paper, we successfully address network inference in both
cases, attaining an unbiased, tight reconstruction of every weight in the network from transfer entropy
measures.

Although numerical results on coupled chaotic tent maps seem to align with our analytical predic-
tions, the generality of our results remains an open question for future research. Specifically, our future
work should seek to establish a general framework for error quantification in transfer entropy-based
network inference, beyond the case of Boolean network model examined herein. While it is unlikely
that one could determine a closed-form expression of transfer entropy in terms of the network topology
as proposed in this paper, it may be tenable to establish conservative bounds on information transfer
associated with indirect influence between nodes. Another area of future inquiry encompasses the ex-
tension of the analytical framework to encompass time-varying dynamics, leading to a non-stationary
Markov process, and self-loops in the network, which would likely exacerbate the role of heterogeneity
on transfer entropy.
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